Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
Virus Res ; 288: 198129, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-719033

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 affects all aspects of human life. Detection platforms that are efficient, rapid, accurate, specific, sensitive, and user friendly are urgently needed to manage and control the spread of SARS-CoV-2. RT-qPCR based methods are the gold standard for SARS-CoV-2 detection. However, these methods require trained personnel, sophisticated infrastructure, and a long turnaround time, thereby limiting their usefulness. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP), a one-step nucleic acid amplification method conducted at a single temperature, has been used for colorimetric virus detection. CRISPR-Cas12 and CRISPR-Cas13 systems, which possess collateral activity against ssDNA and RNA, respectively, have also been harnessed for virus detection. Here, we built an efficient, rapid, specific, sensitive, user-friendly SARS-CoV-2 detection module that combines the robust virus amplification of RT-LAMP with the specific detection ability of SARS-CoV-2 by CRISPR-Cas12. Furthermore, we combined the RT-LAMP-CRISPR-Cas12 module with lateral flow cells to enable highly efficient point-of-care SARS-CoV-2 detection. Our iSCAN SARS-CoV-2 detection module, which exhibits the critical features of a robust molecular diagnostic device, should facilitate the effective management and control of COVID-19.


Subject(s)
Betacoronavirus/genetics , CRISPR-Cas Systems , Clinical Laboratory Techniques/methods , Colorimetry/methods , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/instrumentation , Colorimetry/instrumentation , Coronavirus Infections/virology , Endodeoxyribonucleases/chemistry , Humans , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Pandemics , Pneumonia, Viral/virology , Point-of-Care Systems , Rheology , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL